An evaluation of the robustness of existing supervised machine learning approaches to the classification of emotions in speech

نویسندگان

  • Mohammad Shami
  • Werner Verhelst
چکیده

In this study, the robustness of approaches to the automatic classification of emotions in speech is addressed. Among the many types of emotions that exist, two groups of emotions are considered, adult-to-adult acted vocal expressions of common types of emotions like happiness, sadness, and anger and adult-to-infant vocal expressions of affective intents also known as ‘‘motherese’’. Specifically, we estimate the generalization capability of two feature extraction approaches, the approach developed for Sony’s robotic dog AIBO (AIBO) and the segment-based approach (SBA) of [Shami, M., Kamel, M., 2005. Segment-based approach to the recognition of emotions in speech. In: IEEE Conf. on Multimedia and Expo (ICME05), Amsterdam, The Netherlands]. Three machine learning approaches are considered, K-nearest neighbors (KNN), Support vector machines (SVM) and Ada-boosted decision trees and four emotional speech databases are employed, Kismet, BabyEars, Danish, and Berlin databases. Single corpus experiments show that the considered feature extraction approaches AIBO and SBA are competitive on the four databases considered and that their performance is comparable with previously published results on the same databases. The best choice of machine learning algorithm seems to depend on the feature extraction approach considered. Multi-corpus experiments are performed with the Kismet–BabyEars and the Danish–Berlin database pairs that contain parallel emotional classes. Automatic clustering of the emotional classes in the database pairs shows that the patterns behind the emotions in the Kismet–BabyEars pair are less database dependent than the patterns in the Danish–Berlin pair. In off-corpus testing the classifier is trained on one database of a pair and tested on the other. This provides little improvement over baseline classification. In integrated corpus testing, however, the classifier is machine learned on the merged databases and this gives promisingly robust classification results, which suggest that emotional corpora with parallel emotion classes recorded under different conditions can be used to construct a single classifier capable of distinguishing the emotions in the merged corpora. Such a classifier is more robust than a classifier learned on a single corpus as it can recognize more varied expressions of the same emotional classes. These findings suggest that the existing approaches for the classification of emotions in speech are efficient enough to handle larger amounts of training data without any reduction in classification accuracy. 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Speech Communication

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2007